3 minute read

(โˆ€๐‘šโˆˆโ€ˆโ„•)(โˆƒ๐‘›โ€ˆโˆˆโ€ˆโ„•)(๐‘›>๐‘š), True

  1. Express the existence assertions

a. ($โˆƒx$โ€ˆโˆˆโ€ˆโ„•)($x^3 = 27$ )

b. ($โˆƒ๐‘›$โ€ˆโˆˆโ€ˆโ„•)(๐‘›>10000)

c. natural number n is not a prime ($โˆƒp$โ€ˆโˆˆโ€ˆโ„•)($โˆƒm$โ€ˆโˆˆโ€ˆโ„•)($p$>1 โˆง $m$>1 โˆง $n=pm$)

  1. Express the โ€˜for allโ€™ assertions

a. ($โˆ€x$ โˆ‰โ€ˆโ„•)($x^3$ = 28) ยฌ($โˆƒx$ โˆˆโ€ˆ$โ„•$)($x^3$ = 28) ($โˆ€x$ โˆˆโ€ˆโ„•)($x^3$ โ‰  28)

($โˆ€x$ โˆˆโ€ˆโ„•)ยฌ($x^3$ = 28)

b. ($โˆ€n$ โˆˆโ€ˆโ„•)($n>0$ ) c. ($โˆ€p$ โˆˆโ€ˆโ„•)($โˆ€q$ โˆˆโ€ˆโ„•)[( **$n=pq$) **โ‡’$n=pqn=pq$$p$=1 V $q=1$ )]

  1. quantifiers for people

a. ($โˆ€x$)($โˆƒy$) $L(x,y)$, where $L(x,y)$ denotes โ€œ$x$ love $y$โ€

b. ($โˆ€x$) [Tall$(x)$ V Short$(x)$]

c. [($โˆ€x$) Tall$(x)$] V [($โˆ€x)$ Short$(x)$]

d. ($โˆ€n$)[ยฌ At-home$(n)$] ($ยฌโˆƒn$)[At-home$(n)$]

e. if John comes, all the women will leave. Come$(John)$ โ‡’ $โˆ€x$[Woman$(x)$ โ‡’Leave$(x)$]

f. if a man comes, all the women will leave. ($โˆƒx$)[Man$(x)$ โˆง Comes$(x)$] โ‡’ ($โˆ€x$)[Woman$(x)$โ‡’Leave$(x)$]

  1. Express quantifiers

a. the equation $x^2$ + a = 0 has a real root for any real number a. ($x^2$ + a = 0) โˆง [($โˆƒx$, $โˆ€a$) โˆˆ $R$]?

($โˆ€a$ โˆˆ $R$)($โˆƒx$โˆˆ $R$)($x^2$ + a = 0) Donโ€™t mistake the order, โ€œreal number aโ€ should be on first, then follows others, because โ€œxโ€ depends on โ€œaโ€. otherwise, it will be wrong express, take โ€œAmerican Melanoma Foundationโ€ for example.

b. the equation $x^2$ + a = 0 has a real root for any negative real number a. ($โˆ€a$โˆˆR)[(a<0)โ‡’($โˆƒx$โˆˆR)($x^2$ + a = 0)]

c. Every real number is rational. (False statement)

($โˆ€a$ โˆˆ $R$)($โˆƒx$โˆˆ $N$)($โˆƒy$โˆˆ $N$)(a=x/y V a=-x/y V a=0)

($โˆ€a$ โˆˆ $R$)($โˆƒx$โˆˆ $Z$)($โˆƒy$โˆˆ $Z$)(a=x/y, V a=0)? is it a right solution?

R, Real number,

Q, Rational number, x/y of two integers.

Z, [Integer](https://en.wikipedia.org/wiki/Integer_(computer_science)) number(+, -)

N, Nature number, non-negative integersย 0, 1, 2, 3, โ€ฆโ€ฆ N

R>Q>Z>N, the order is from big to small number set.

d. there is an irrational number. ($โˆƒa$ โˆˆ $R$)($โˆ€x$โˆˆ $N$)($โˆ€y$โˆˆ $N$)(aโ‰ x/y โˆง aโ‰ -x/y)

e. there is no largest rational number {($โˆ€i$, $โˆƒir$) โˆˆ $R$$Q$}($i>ir$)?

($โˆ€r$โˆˆ$R$)($โˆƒp$โˆˆ$R$)[(p>r)โˆง($โˆ€m$โˆˆ$N$)($โˆ€n$โˆˆ$N$) (pโ‰ m/n)]

For all real number r, there is an number p, when p is greater than r, and for all nature number m and n, p is not equal to that m divided by n, so p is irrational number, it means that there is always an irrational number greater than a real number r.

  1. Express in symbolic form

a. ($โˆ€x$โˆˆC)[D$(x)$ โ‡’ M$(x)$]

b. ($โˆ€x$โˆˆC)[ยฌD(x) โ‡’ M(x)]

c. ($โˆ€x$โˆˆC)[M(x) โ‡’ D(x)], universal quantifier $โˆ€x$, usually compare it with conditional implication โ‡’

d. ($โˆƒx$โˆˆC)[D(x)โˆง ยฌM(x)], existential quantifier $โˆƒx$โˆˆ, typically compare it with conjunction โˆง

e. ($โˆƒx$โˆˆC)[ยฌD(x) โˆง M(x)]

  1. You can find a rational number between any two unequal real number.

$โˆ€x$ $โˆ€y${(x<y) โ‡’$โˆƒz$ $โˆƒz$ $Q(z)$ โˆง(x<z<y)]}

  1. Abraham Lincoln : โ€œYou may fool all the people some of the time, you can even fool some of the people all of the time, but you cannot fool all of the people all the time.โ€

F$(p,t)$ = You may fool people p, at time t.

[F($โˆ€p$ โˆง $โˆƒt$) V ($โˆ€t$ โˆง $โˆƒp$)] โˆง[ยฌ Fool ($โˆ€t$ โˆง $โˆ€p$ )]

($โˆƒt\(โˆ€p$ โˆง $โˆƒp\)โˆ€t$ โˆง ยฌ$โˆ€t$$โˆ€p$)F$(p,t)$ ? is it a right solution?

$โˆƒt\(โˆ€p$F$(p,t)$ โˆง $โˆƒp\)โˆ€t$F$(p,t)$ โˆง ยฌ$โˆ€t$$โˆ€p$)F$(p,t)$

Something = $โˆƒ$

  1. A driver is involved in an accident every six seconds. False statement, ambiguous

A(d, t) , Driver in d, an accident in a, every six seconds in t

$โˆƒd$ $โˆ€t$(t= every 6 seconds)A$(d,t)$

8.1 Every six seconds A driver is involved in an accident. True statement, precise.

$โˆ€t$ $โˆƒd$ A$(d,t)$

Quiz

  1. d. they win exactly a match when they are partners. $(โˆƒ!t)$ W(t) f. If Rosario wins the match, she must be partnering with Antonio. the Scope is double tennis, it is not in this case that only Rosario.

  2. there is no largest prime.

$โˆ€x$$โˆƒy$ [Prime(x)โˆงPrime(y)โˆง(x<y)], $โˆ€x$ $โˆ€y$ [Prime(x)โˆงPrime(y)โˆง(x<y)],

$โˆƒy$ $โˆ€x$[Prime(x)โˆง(y<x)], $โˆ€x$ Prime(x) is False. Because there exist lots of Prime number x that is not greater than natural number y. so we can not set $โˆ€x$ Prime(x)

  1. Evaluate this purported proof, according to the course rubric.

PS3_Q6.pdf 4+3+2+0+0+2 = 11 ?

Teacherโ€™s standard answer 4+0+0+4+0+2=10