Mathematical Thinking Stanford, W3 Assignment 5
(โ๐โโโ)(โ๐โโโโ)(๐>๐), True
- Express the existence assertions
a. ($โx$โโโโ)($x^3 = 27$ )
b. ($โ๐$โโโโ)(๐>10000)
c. natural number n is not a prime ($โp$โโโโ)($โm$โโโโ)($p$>1 โง $m$>1 โง $n=pm$)
- Express the โfor allโ assertions
a. ($โx$ โโโ)($x^3$ = 28) ยฌ($โx$ โโ$โ$)($x^3$ = 28) ($โx$ โโโ)($x^3$ โ 28)
($โx$ โโโ)ยฌ($x^3$ = 28)
b. ($โn$ โโโ)($n>0$ ) c. ($โp$ โโโ)($โq$ โโโ)[( **$n=pq$) **โ$n=pqn=pq$$p$=1 V $q=1$ )]
- quantifiers for people
a. ($โx$)($โy$) $L(x,y)$, where $L(x,y)$ denotes โ$x$ love $y$โ
b. ($โx$) [Tall$(x)$ V Short$(x)$]
c. [($โx$) Tall$(x)$] V [($โx)$ Short$(x)$]
d. ($โn$)[ยฌ At-home$(n)$] ($ยฌโn$)[At-home$(n)$]
e. if John comes, all the women will leave. Come$(John)$ โ $โx$[Woman$(x)$ โLeave$(x)$]
f. if a man comes, all the women will leave. ($โx$)[Man$(x)$ โง Comes$(x)$] โ ($โx$)[Woman$(x)$โLeave$(x)$]
- Express quantifiers
a. the equation $x^2$ + a = 0 has a real root for any real number a. ($x^2$ + a = 0) โง [($โx$, $โa$) โ $R$]?
($โa$ โ $R$)($โx$โ $R$)($x^2$ + a = 0) Donโt mistake the order, โreal number aโ should be on first, then follows others, because โxโ depends on โaโ. otherwise, it will be wrong express, take โAmerican Melanoma Foundationโ for example.
b. the equation $x^2$ + a = 0 has a real root for any negative real number a. ($โa$โR)[(a<0)โ($โx$โR)($x^2$ + a = 0)]
c. Every real number is rational. (False statement)
($โa$ โ $R$)($โx$โ $N$)($โy$โ $N$)(a=x/y V a=-x/y V a=0)
($โa$ โ $R$)($โx$โ $Z$)($โy$โ $Z$)(a=x/y, V a=0)? is it a right solution?
R, Real number,
Q, Rational number, x/y of two integers.
Z, [Integer](https://en.wikipedia.org/wiki/Integer_(computer_science)) number(+, -)
N, Nature number, non-negative integersย 0, 1, 2, 3, โฆโฆ N
R>Q>Z>N, the order is from big to small number set.
d. there is an irrational number. ($โa$ โ $R$)($โx$โ $N$)($โy$โ $N$)(aโ x/y โง aโ -x/y)
e. there is no largest rational number {($โi$, $โir$) โ $R$$Q$}($i>ir$)?
($โr$โ$R$)($โp$โ$R$)[(p>r)โง($โm$โ$N$)($โn$โ$N$) (pโ m/n)]
For all real number r, there is an number p, when p is greater than r, and for all nature number m and n, p is not equal to that m divided by n, so p is irrational number, it means that there is always an irrational number greater than a real number r.
- Express in symbolic form
a. ($โx$โC)[D$(x)$ โ M$(x)$]
b. ($โx$โC)[ยฌD(x) โ M(x)]
c. ($โx$โC)[M(x) โ D(x)], universal quantifier $โx$, usually compare it with conditional implication โ
d. ($โx$โC)[D(x)โง ยฌM(x)], existential quantifier $โx$โ, typically compare it with conjunction โง
e. ($โx$โC)[ยฌD(x) โง M(x)]
- You can find a rational number between any two unequal real number.
$โx$ $โy${(x<y) โ$โz$ $โz$ $Q(z)$ โง(x<z<y)]}
- Abraham Lincoln : โYou may fool all the people some of the time, you can even fool some of the people all of the time, but you cannot fool all of the people all the time.โ
F$(p,t)$ = You may fool people p, at time t.
[F($โp$ โง $โt$) V ($โt$ โง $โp$)] โง[ยฌ Fool ($โt$ โง $โp$ )]
($โt\(โp$ โง $โp\)โt$ โง ยฌ$โt$$โp$)F$(p,t)$ ? is it a right solution?
$โt\(โp$F$(p,t)$ โง $โp\)โt$F$(p,t)$ โง ยฌ$โt$$โp$)F$(p,t)$
Something = $โ$
- A driver is involved in an accident every six seconds. False statement, ambiguous
A(d, t) , Driver in d, an accident in a, every six seconds in t
$โd$ $โt$(t= every 6 seconds)A$(d,t)$
8.1 Every six seconds A driver is involved in an accident. True statement, precise.
$โt$ $โd$ A$(d,t)$
Quiz
-
d. they win exactly a match when they are partners. $(โ!t)$ W(t) f. If Rosario wins the match, she must be partnering with Antonio. the Scope is double tennis, it is not in this case that only Rosario.
-
there is no largest prime.
$โx$$โy$ [Prime(x)โงPrime(y)โง(x<y)], $โx$ $โy$ [Prime(x)โงPrime(y)โง(x<y)],
$โy$ $โx$[Prime(x)โง(y<x)], $โx$ Prime(x) is False. Because there exist lots of Prime number x that is not greater than natural number y. so we can not set $โx$ Prime(x)
- Evaluate this purported proof, according to the course rubric.
PS3_Q6.pdf 4+3+2+0+0+2 = 11 ?
Teacherโs standard answer 4+0+0+4+0+2=10